Comets, its Composition and Origin

Table of Content

The first written records of comets date back to nearly 3,000 years ago from China and Europe. The accounts of these comets were believed to be the causes of terrible events that occurred afterwards. In more recent times, however, astronomers have found out what they really are. A comet is basically a mixture of ices, from both water and frozen gases, and dust.

They have also been given the names “dirty snowballs” or “icy mud balls.” The typical comet is less than 10 kilometers across. They spend most of their time frozen solid in the outer parts of our solar system.

This essay could be plagiarized. Get your custom essay
“Dirty Pretty Things” Acts of Desperation: The State of Being Desperate
128 writers

ready to help you now

Get original paper

Without paying upfront

Comets are composed of five parts: the nucleus, coma, hydrogen cloud, dust tail, and ion tail. The nucleus is pretty solid and stable, composed mostly of ice and gas with a small amount of dust and other solids. The surface of the nucleus is best described as a black crust. Comet nuclei can range from 1 kilometer to about 50 kilometers across. The black crust on the surface of the nuclei helps the comet to absorb heat, which causes some of the ices under the crust to turn to a gas. Pressure builds up underneath the crust and causes the surface to bubble up in some places. Eventually, the weak spots of the crust break open from the pressure, and the gas shoots outward; astronomers refer this to as a jet.

Dust that had been mixed in with the gas is also pushed out, and as more jets appear, a small gas and dust shell forms around the nucleus, and this is called the coma. The coma, also called the head, is a dense cloud of water, carbon dioxide and other gases and comes off of the nucleus. They can be several thousand kilometers in diameter, depending on the comet’s distance from the sun and the size of the nucleus. The size of the nucleus is important because since large nuclei have a greater surface area facing the sun, which is the side that is the warmest, hence the side where most of the jets are coming from, it means more jets and greater amounts of gas and dust go into the coma. Even though the coma can get to be very large, its size can actually decrease about the time it crosses the orbit of Mars. At this distance the particles that drift out from the sun act as a powerful wind which blows the gas and dust particles away from the nucleus and coma. This is the process, which makes the comet’s tail. The hydrogen cloud is very large at millions of kilometers in diameter. But it is only a very sparse body of neutral hydrogen. It was discovered from spectroscopy that was carried out by satellites in 1970.

Hydrogen was discovered in comets Tago-Sato-Kosaka and Bennett. It is ionized hydrogen that forms the light that goes past the coma. The reason why the hydrogen cloud was not discovered for a long time is because it is not visible from Earth. Atomic hydrogen emits in the ultraviolet, but the ozone layer stops the waves from entering. The hydrogen cloud can only be observed from space, with satellites. The dust tail is usually up to 10 million kilometers long, and is composed of smoke-sized dust particles that come off the nucleus by escaping gases. The dust tail is also the most visible part of a comet to the naked eye. The tail has a potential to be long when it enters the orbit of Earth. The record for the longest tail is the length of the Great Comet of 1843; its tail extended more than 250 million kilometers. The ion tail, known as type I or plasma, is made up of ions. It can be up to 100 million kilometers long and 100,000 kilometers wide. The tail is straight and always is opposed to the direction of the Sun. The color of it, through a spectrum, is mostly blue. The reason why the tail is ionized is because of solar wind. Solar wind, which flows at about 400 kilometers per second, is filled with charged particles that are around the solar magnetic field. The gases in the tail are ionized by the process of “photo ionization of the neutral molecules under the action of the solar ultraviolet radiation”, or “under the action of the solar wind by a phenomenon where a proton removes an electron from an atom.” The speed at which the ions are moving is what causes the tail to be straight. The light from the tail is emitted by “fluorescence,” which is a particle of solar wind that excites an electron of the atom or molecule concerned. This electron reaches a level at which it is stable, goes down again and releases its energy in the form of a photon, a particle of light, of a well determined energy and thus, of a specific color.

When our solar system began, it was just a vast cloud of gas and dust. Several billion years ago, the cloud slowly rotated around the sun, which was very young, and particles within the cloud collided with one each other. During this time some objects were shattered by these collisions, while others grew in size and were to later become the planets. Throughout this early period, comets probably filled the solar system. Their collisions with the early planets played a major part in the growth and evolution of each of the planets.

The ice that makes up comets seems to have been what formed the first atmospheres of the planets, and scientists now very strongly believe that it was the collisions of comets that brought water to our world, and made life able to begin. Over the years, comets actually became more rare within our solar system. They do not fill our skies as they did about 4 billion years ago. Also today, a comet that can be seen with the naked eye can be expected only about once in a whole decade. Astronomers with powerful telescopes can see many more comets, but even in this case it is still not common for as many as 15 or 20 comets to be able to be seen in the sky at one time. Today, most comets are located outside of our solar system in part of the original cloud of dust and gas that has stayed pretty much untouched for billions of years. These regions are called the Oort Cloud and the Kuiper Belt. The Dutch astronomer Jan Oort first proposed the theory of the Oort Cloud in 1950. His study of the orbits of comets with very long orbital periods made him believe that a large cloud of comets existed far outside the solar system, possibly within the range of 5-8 trillion kilometers (or more) from the sun. The total number of comets within this belt was estimated as a trillion. It is thought that objects within this cloud are occasionally ejected either by collision with one another, or by the gravitational forces of stars. Many of the ejected objects probably never cross the paths of the planets, and still more do not come close enough to be seen with even the largest telescopes. However, a few do manage to travel into the inner solar system and are subsequently seen from Earth. This cloud remains a theory only, as it has never been directly detected. The Kuiper Belt is a region that was first proposed by the Dutch-American astronomer Gerard Kuiper in 1951. Seeing that Oort’s cloud of comets did not really explain the reason for the population of comets with short orbital periods (making complete orbits around the sun in less than 200 years), Kuiper thought that a belt of comets probably existed outside the orbit of Neptune within the range of 30 to 50 astronomical units (2.8 to 4.6 billion miles) from the sun. Collisions and perturbations by the planets of our solar system are believed to be the reasons for the ejection of bodies from this belt. Around 1988, astronomers David Jewitt (University of Hawaii) and Jane Luu (University of California at Berkeley) began searching for members of the Kuiper belt using modern electronic cameras attached to a large telescope on Mauna Kea, Hawaii. The equipment was capable of detecting extremely faint objects. After nearly 5 years of systematic searching they found a distinct image on 1992 August 30, which was subsequently designated 1992 QB1. The object was moving very slowly, and calculations eventually revealed the object took 291 years to orbit the sun at an average distance of 43 AU. Since, the discoveries of that object over three dozen additional objects had been found as of the end of 1996. Some astronomers estimate that there are over 30,000 icy objects bigger than 100 kilometers in diameter in the Kuiper belt. The total mass of the belt is believed to be hundreds of times bigger than the asteroid belt between Mars and Jupiter. Comets are one of the more exciting things to study in astronomy because of a number of reasons. One of these reasons is because they are unpredictable. Comets can suddenly brighten or fade away in just a few hours. They can also lose their tail, or even develop more tails. Another thing is they can split into pieces, so multiple comets can be observed traveling together. Another reason why comets are interesting to study is because they have some of the oldest and untouched objects in the solar system. The comets’ composition represent how things were originally, and also what made the sun and the planets how they are today. Studies have recently shown that comets are what formed life on Earth. Collisions between Earth and comets in earlier times brought water to the Earth, which resulted in oceans forming. After the oceans were formed, it enabled life to begin. However, as easily as comets can begin life, they just as easily can end it. The way that the dinosaurs became extinct was from collisions from comets. Most of the comets that are seen from Earth only come by once every few millions of years. Some do, however, come back within around 200 years. These types of comets are called short-period comets. These comets, which have shorter orbits, are believed by scientists to come from the Kuiper belt. The reason why this is believed is because there are some small, icy objects that orbit near and beyond Pluto that have been detected. Since the orbits of short-period comets are shorter, they pass the Sun more often, which makes it start to disappear. The ice and gasses start evaporating, which leaves the dust and other solids left. When this happens, meteors are formed. The orbit of planets and comets are alike because they travel in an ellipse with the sun as the center point. However, for the planets the orbit is more in a circular shape. Also, the planets orbit the sun on the same plane. However, most comets, including comet Hyakutake, which was visible in 1996, and Hale-Bopp that was in 1997, have elliptical orbits of that are very large in size, and are shaped more like an oval than a circle shape. The foci of these comets are very far apart from each other. The plane of comet Hyakutake’s orbit intersected the planetary orbit plane at a steep angle. The plane of Hale-Bopp is nearly perpendicular to the plane of earth’s orbit. One of the most well known comets is Halley’s comet. This comet has been known since around 240 BC, and maybe even as early as 1059 BC. Its most famous appearance was in the year 1066 AD, when it was seen right before the Battle of Hastings. The comet was named after Edmund Halley, who is the one who calculated its orbit. He figured that the comets that were seen in 1531 and 1607 were the same thing, which meant it had an orbit of 76 years. Halley died, however in 1742, so he never lived to see his if he was right. His prediction did come true though when the comet came back on Christmas Eve in 1758. Halley’s Comet came in the years 1835 and 1910. Then in 1984 to 1985, five spacecraft from the USSR, Japan and Europe were sent to make observations and study Halley’s Comet in 1986. One of the deep space satellites from NASA was changed so it could observe the solar wind upstream from the comet Halley. Only three comets have ever been studied from a spacecraft. Comet Giacobini-Zinner was one of the comets studied from space; it was in 1985. Comet Halley was studied in 1986. Comet Grigg-Skjellerup was studied on July 10th, 1992. The study of comets is very important because it is important to know what they are, and also it can explain a lot of unanswered questions about the origins of life.

Some people who do not fully understand what comets are and what they do can be led to believe in many bad things, which can result in a tragedy. An example of such a tragedy would be the “Heaven’s Gate” incident. There were many people who believed that the comet Hale-Bopp was going to cause something very bad to happen, so they all committed suicide. If people can have a better understanding of what comets are, things like this could possibly be prevented. The roles that comets have played in the earth and in life as it is today are really big and important. If it had not been for comets, then life could possibly not have even existed now. Also, many creatures, for example the dinosaurs, have become extinct because of the comets colliding with the earth. If the comets had never made these creatures go extinct, then life would without a doubt be different.

Franklin, William. “Small Comets.” Online. Internet. Available:

Hamilton, Calvin. “Asteroid Introduction.” Online. Internet. Available:

Laborde, John. “Comet West.” Online. Internet. Available:

Rondlen, Michael. “Comet.” Online. Internet. Available:

Sipes, Russell. “Comet Hale-Bopp.” Online. Internet. Available:”Comet Hale-Bopp”

Cite this page

Comets, its Composition and Origin. (2018, Jun 24). Retrieved from

Remember! This essay was written by a student

You can get a custom paper by one of our expert writers

Order custom paper Without paying upfront