We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

See Pricing

What's Your Topic?

Hire a Professional Writer Now

The input space is limited by 250 symbols

What's Your Deadline?

Choose 3 Hours or More.
Back
2/4 steps

How Many Pages?

Back
3/4 steps

Sign Up and See Pricing

"You must agree to out terms of services and privacy policy"
Back
Get Offer

Electromagnetism and Magnetic Field Essay

Hire a Professional Writer Now

The input space is limited by 250 symbols

Deadline:2 days left
"You must agree to out terms of services and privacy policy"
Write my paper

Electromagnetism From Wikipedia, the free encyclopedia Jump to: navigation, search Electromagnetism is the physics of the electromagnetic field, a field that exerts a force on particles with the property of electric charge and is reciprocally affected by the presence and motion of such particles. A changing magnetic field produces an electric field (this is the phenomenon of electromagnetic induction, the basis of operation for electrical generators, induction motors, and transformers). Similarly, a changing electric field generates a magnetic field.

The magnetic field is produced by the motion of electric charges, i.

Don't use plagiarized sources. Get Your Custom Essay on
Electromagnetism and Magnetic Field
Just from $13,9/Page
Get custom paper

e. , electric current. The magnetic field causes the magnetic force associated with magnets. The theoretical implications of electromagnetism led to the development of special relativity by Albert Einstein in 1905; and from this it was shown that magnetic fields and electric fields are convertible with relative motion as a four vector and this led to their unification as electromagnetism. See also: history of electromagnetism and Magnetism

While preparing for an evening lecture on 21 April 1820, Hans Christian Orsted developed an experiment that provided surprising evidence.

As he was setting up his materials, he noticed a compass needle deflected from magnetic north when the electric current from the battery he was using was switched on and off. This deflection convinced him that magnetic fields radiate from all sides off of a wire carrying an electric current, just as light and heat do, and that it confirmed a direct relationship between electricity and magnetism.

At the time of discovery, Oersted did not suggest any satisfactory explanation of the phenomenon, nor did he try to represent the phenomenon in a mathematical framework. However, three months later he began more intensive investigations. Soon thereafter he published his findings, proving that an electric current produces a magnetic field as it flows through a wire. The CGS unit of magnetic induction (oersted) is named in honor of his contributions to the field of electromagnetism.

His findings resulted in intensive research throughout the scientific community in electrodynamics. They influenced French physicist Andre-Marie Ampere’s developments of a single mathematical form to represent the magnetic forces between current-carrying conductors. Orsted’s discovery also represented a major step toward a unified concept of energy. This unification, which was observed by Michael Faraday, extended by James Clerk Maxwell, and partially reformulated by Oliver Heaviside and Heinrich Hertz, is one of the accomplishments of 19th century Mathematical Physics.

It had far-reaching consequences, one of which was the understanding of the nature of light. Light and other electromagnetic waves take the form of quantized, self-propagating oscillatory electromagnetic field disturbances called photons. Different frequencies of oscillation give rise to the different forms of electromagnetic radiation, from radio waves at the lowest frequencies, to visible light at intermediate frequencies, to gamma rays at the highest frequencies.

Orsted was not the only person to examine the relation between electricity and magnetism. In 1802 Gian Domenico Romagnosi, an Italian legal scholar, deflected a magnetic needle by electrostatic charges. Actually, no galvanic current existed in the setup and hence no electromagnetism was present. An account of the discovery was published in 1802 in an Italian newspaper, but it was largely overlooked by the contemporary scientific community. {text:bookmark-start} {text:bookmark-end} [edit] The electromagnetic force Main article: Electromagnetic force

The force that the electromagnetic field exerts on electrically charged particles, called the electromagnetic force, is one of the fundamental forces. The other fundamental forces are strong nuclear force (which holds atomic nuclei together), the weak nuclear force and the gravitational force. All other forces are ultimately derived from these fundamental forces. The electromagnetic force is the one responsible for practically all the phenomena encountered in daily life, with the exception of gravity.

All the forces involved in interactions between atoms can be traced to the electromagnetic force acting on the electrically charged protons and electrons inside the atoms. This includes the forces we experience in “pushing” or “pulling” ordinary material objects, which come from the intermolecular forces between the individual molecules in our bodies and those in the objects. It also includes all forms of chemical phenomena, which arise from interactions between electron orbitals. {text:bookmark-start} {text:bookmark-end} [edit] Classical electrodynamics Main article: Classical electrodynamics

The scientist William Gilbert proposed, in his De Magnete (1600), that electricity and magnetism, while both capable of causing attraction and repulsion of objects, were distinct effects. Mariners had noticed that lightning strikes had the ability to disturb a compass needle, but the link between lightning and electricity was not confirmed until Benjamin Franklin’s proposed experiments in 1752. One of the first to discover and publish a link between man-made electric current and magnetism was Romagnosi, who in 1802 noticed that connecting a wire across a voltaic pile deflected a nearby compass needle.

However, the effect did not become widely known until 1820, when Orsted performed a similar experiment. Orsted’s work influenced Ampere to produce a theory of electromagnetism that set the subject on a mathematical foundation. An accurate theory of electromagnetism, known as classical electromagnetism, was developed by various physicists over the course of the 19th century, culminating in the work of James Clerk Maxwell, who unified the preceding developments into a single theory and discovered the electromagnetic nature of light.

In classical electromagnetism, the electromagnetic field obeys a set of equations known as Maxwell’s equations, and the electromagnetic force is given by the Lorentz force law. One of the peculiarities of classical electromagnetism is that it is difficult to reconcile with classical mechanics, but it is compatible with special relativity. According to Maxwell’s equations, the speed of light in a vacuum is a universal constant, dependent only on the electrical permittivity and magnetic permeability of free space. This violates Galilean invariance, a long-standing cornerstone of classical mechanics.

One way to reconcile the two theories is to assume the existence of a luminiferous aether through which the light propagates. However, subsequent experimental efforts failed to detect the presence of the aether. After important contributions of Hendrik Lorentz and Henri Poincare, in 1905, Albert Einstein solved the problem with the introduction of special relativity, which replaces classical kinematics with a new theory of kinematics that is compatible with classical electromagnetism. (For more information, see History of special relativity. ) In addition, relativity heory shows that in moving frames of reference a magnetic field transforms to a field with a nonzero electric component and vice versa; thus firmly showing that they are two sides of the same coin, and thus the term “electromagnetism”. (For more information, see Classical electromagnetism and special relativity. ) {text:bookmark-start} {text:bookmark-end} [edit] The photoelectric effect Main article: Photoelectric effect In another paper published in that same year, Albert Einstein undermined the very foundations of classical electromagnetism.

His theory of the photoelectric effect (for which he won the Nobel prize for physics) posited that light could exist in discrete particle-like quantities, which later came to be known as photons. Einstein’s theory of the photoelectric effect extended the insights that appeared in the solution of the ultraviolet catastrophe presented by Max Planck in 1900. In his work, Planck showed that hot objects emit electromagnetic radiation in discrete packets, which leads to a finite total energy emitted as black body radiation.

Both of these results were in direct contradiction with the classical view of light as a continuous wave. Planck’s and Einstein’s theories were progenitors of quantum mechanics, which, when formulated in 1925, necessitated the invention of a quantum theory of electromagnetism. This theory, completed in the 1940s, is known as quantum electrodynamics (or “QED”), and is one of the most accurate theories known to physics. {text:bookmark-start} {text:bookmark-end} [edit] Units

Electromagnetic units are part of a system of electrical units based primarily upon the magnetic properties of electric currents, the fundamental SI unit being the ampere. The units are: ampere (current) coulomb (charge) farad (capacitance) henry (inductance) ohm (resistance) volt (electric potential) watt (power) tesla (magnetic field) In the electromagnetic cgs system, electrical current is a fundamental quantity defined via Ampere’s law and takes the permeability as a dimensionless quantity (relative permeability) whose value in a vacuum is unity.

As a consequence, the square of the speed of light appears explicitly in some of the equations interrelating quantities in this system. {text:bookmark-start} {text:bookmark-end} [edit] Electromagnetic phenomena With the exception of gravitation, electromagnetic phenomena as described by quantum electrodynamics account for almost all physical phenomena observable to the unaided human senses, including light and other electromagnetic radiation, all of chemistry, most of mechanics (excepting gravitation), and of course magnetism and electricity.

Cite this Electromagnetism and Magnetic Field Essay

Electromagnetism and Magnetic Field Essay. (2018, Jan 29). Retrieved from https://graduateway.com/electromagnetism-and-magnetic-field/

Show less
  • Use multiple resourses when assembling your essay
  • Get help form professional writers when not sure you can do it yourself
  • Use Plagiarism Checker to double check your essay
  • Do not copy and paste free to download essays
Get plagiarism free essay

Search for essay samples now

Haven't found the Essay You Want?

Get my paper now

For Only $13.90/page