Get help now

Management of Groundwater Contamination

  • Pages 9
  • Words 2117
  • Views 560
  • dovnload

    Download

    Cite

  • Pages 9
  • Words 2117
  • Views 560
  • Academic anxiety?

    Get original paper in 3 hours and nail the task

    Get your paper price

    124 experts online

    Water is inextricably linked with every facet of human development. Its unavailability, deterioration in quality and neglect drastically impedes the quality of human life. The India’s accelerated and continuous growth has led to an unprecedented stress on the finite and fragile water resources that are on the verge of depletion on account of overexploitation. Sectoral demands for water are growing rapidly in line with urbanization, population increase, rising income and industrial growth. One of the major sources of drinking water is underground water.

    The poor management of water calls for action by all stakeholders. In the advent of a water crisis, industry will be hard hit and, it is, therefore, incumbent upon the same to undertake pro active measures toward effective water management. Despite massive outlays for drinking water and sanitation in India, access to safe drinking water remains a challenge. Institutional challenges in rural and urban drinking water and sanitation remain a major hurdle. These include addressing leakages in official spending, monitoring of progress and creating linkages between different agencies.

    There are concerns on groundwater and surface water sustainability, with emerging concerns of inequity in access that is both intra-rural and rural-urban. The crisis has become intense over the past decade affecting both rural and urban sectors. With two-thirds of India being drought prone, increasing demands on available water from intensive agriculture and industry and increasing levels of groundwater and surface water pollution, drinking water availability is emerging as a constraint in many places. Access and delivery of safe drinking water varies from state to state and even within a state.

    We hope the report will provide a roadmap to various stakeholders on embarking and forging partnerships towards sustainable management of our critical underground water resources. Management of Groundwater Contamination Introduction The last century of the bygone millennium, especially its later half, has seen unbelievable scientific and technological developments in improving the quality of life of mankind. People are looking for the state-of-the art equipment and accessories, which are available in urban centers, to have comfort in day-to-day life.

    As a consequence, there is a tremendous stress in urban infrastructure services, be it housing, water supply, waste management, transportation, power generation, telecommunication or any other system. The more the stress, the more is the failure rate in the provision of these services. The ill effects of such fall-outs then boomerang on the management of the services adversely affecting the various components of environment out of the ‘uncared for’ residues which reach the natural water bodies through direct and indirect routes polluting them.

    India, on the whole, is not well off in water resources. The country has 16% of the world’s population, accommodated in 2. 45% of the worlds land area. The total water resources available to India are about 4% of the world’s resources. Groundwater, which is 38. 5% of the available water resources of the country, plays an important role in irrigation, rural water supply and even in meeting industrial demands and drinking water needs. Groundwater is an open access common property natural resource and anyone can bore a well and pump out water without limit.

    This inevitably leads to excessive extraction and as a result the ground water table has gone down in many parts of the country. The per capita availability of water is declining progressively owing to increasing population. Accordingly, the per capita availability of water for the country as a whole has witnessed a fall from 5177 m3 /year in 1951 to 1654 m3 /year in 2007. Groundwater is generally less susceptible to contamination and pollution when compared to surface water bodies. Also, the natural impurities in rainwater, which replenishes groundwater systems, get removed while infiltrating through soil strata.

    But, In India, where groundwater is used intensively for irrigation and industrial purposes, a variety of land and water-based human activities are causing pollution of this precious resource. Its over-exploitation is causing aquifer contamination in certain instances; while in certain others its unscientific development with insufficient knowledge of groundwater flow dynamic and geo-hydro chemical processes has led to its mineralization. A UNICEF report on Indian water scenario also indicates there will be intense competition over water amongst various stakeholders.

    Thus there is an obvious urgency about managing groundwater in a sustainable way.  What is groundwater? When rain falls to the ground, the water does not stop moving. Some of it flows along the surface to streams or lakes, some of it is used by plants, some evaporates and returns to the atmosphere, and some sinks into the ground. Imagine pouring a glass of water onto a pile of sand. Where does the water go? The water moves into the spaces between the particles of sand. Groundwater is water that is found underground in the cracks and spaces in soil, sand and rock.

    Groundwater is stored in–and moves slowly through–layers of soil, sand and rocks called aquifers. Aquifers typically consist of gravel, sand, sandstone, or fractured rock, like limestone. These materials are permeable because they have large connected spaces that allow water to flow through. The speed at which groundwater flows depends on the size of the spaces in the soil or rock and how well the spaces are connected. The area where water fills the aquifer is called the saturated zone (or saturation zone). The top of this zone is called the water table.

    The water table may be located only a foot below the ground’s surface or it can sit hundreds of feet down. Groundwater can be found almost everywhere. The water table may be deep or shallow; and may rise or fall depending on many factors. Heavy rains or melting snow may cause the water table to rise, or heavy pumping of groundwater supplies may cause the water table to fall. The largest use for groundwater is to irrigate crops. It is important to learn to protect our groundwater because of its importance as a source of water for drinking and irrigation.

    Availability and use of groundwater. Of the 1,869 trillion liters reserves, only an estimated 1,122 trillion liters can be exploited due to topographic constraints and distribution effects. The per capita availability of water has significantly come down and is likely to come down further with the growing population and demand. As per the Ministry of Water Resources per capita water availability in 2025 and 2050 is likely to come down by almost 36% and 60% respectively of the 2001 levels.

    Industrial Demand Rapid industrialization is resulting in a significant increase in the industrial demand for water. Industrial water demand is expected to grow by 17% annually, from ~40 BCM currently to ~ 250 BCM by 2025.  In India average water availability in major cities is around 4-5 hours. Only 25% of the total population in urban areas are metered which means most of the water supplied by the utilities is non-revenue water. Pricing of water to domestic consumers is not adequate which results in wastage. Growing population and rapid unplanned urbanization has not only increased the demand for drinking water but also sewage treatment.

    Urban population is expected to grow from 29 % of the total population in 2007 to 55. 2 % by 2050. 5 Agriculture Inherent dependence of Indian agriculture on unpredictable monsoon puts immense pressure on the water table. Production of water-intensive crops is expected to grow by 80% between 2000 and 2050. This would further aggravate the problem of wastewater from agriculture. Sources of Groundwater Contamination Groundwater contamination occurs when man-made products such as gasoline, oil, road salts and chemicals get into the groundwater and cause it to become unsafe and unfit for human use.

    Some of the major sources of these products, called contaminants, are storage tanks, septic systems, hazardous waste sites, landfills, and the widespread use of road salts, fertilizers, pesticides and other chemicals.  Groundwater commonly contains one or more naturally occurring chemicals, leached from soil or rocks by percolating water, in concentrations that exceed drinking water standards or otherwise impair its use.

    Agriculture is one of the most widespread human activities that affects the quality of groundwater. Fertilizers contain nitrogen, phosphorus and potassium and if nitrogen supply exceeds nitrogen uptake by crops, excess nitrogen can be leached to groundwater. In such areas, local nitrate-nitrogen concentrations may exceed drinking water standard of 10 mg/L 2. Pesticides Pesticides have been used since long to combat a variety of agricultural pests. In addition to crop applications, infiltration of spilled pesticides can cause contamination in locations where pesticides are stored, and where sprayers and other equipment used to apply pesticides are loaded and washed.

    Pesticides most frequently detected in groundwater are the fumigants ethylene dibromide (EDB) and 1,2-dichloropropane; the insecticides aldicarb, carbofuran and chlordane; and the herbieides alachlor and atrazine. Feedlots Feedlots confine livestock and poultry and create problems of animal-waste disposal. Feedlot wastes often are collected in impoundments from which they might infiltrate to groundwater and raise nitrate concentrations. Runoff from farmyards may also directly enter an aquifer along the outside of a poorly sealed well easing.

    Percolation of irrigation water into soils dissolves soil salts and transports them downward. Vaporization of applied water from the root zone concentrates salts in the soil and increases the salt load to the groundwater. Chemigation, the practice of mixing and distributing pesticides and fertilizers with irrigation water, may cause contamination if more chemicals are applied than crops can use. It may also cause local contamination if chemicals back-siphon from the holding tank directly into the aquifer through irrigation well.

    Contaminants can enter groundwater from more than 30 different generic sources related to human activities. These sources commonly are referred to as either point or nonpoint sources. Point sources are localized in areas of an acre or less, whereas nonpoint sources are dispersed over broad areas.

    Also systems may be spaced so densely that their discharge exceeds the capacity of the local soil to assimilate the pollutant loads. Landfills Landfills are the places that our garbage is taken to be buried. Landfills are supposed to have a protective bottom layer to prevent contaminants from getting into the water. However, if there is no layer or it is cracked, contaminants from the landfill (car battery acid, paint, household cleaners, trace metals, volatile organic compounds, pesticides etc. can make their way down into the groundwater, which may cause significant local contamination. About 150 million tons of municipal solid waste and 240 million tons of industrial solid waste are deposited in 16,400 landfills each year. Some hazardous waste material may be deposited in municipal landfills and underlying groundwater may become contaminated. Wastes deposited at industrial landfills include a large assortment of trace metals, acids, volatile organic compounds and pesticides, which may cause significant local contamination.

    Surface impoundments Surface impoundments are used to store, treat or dispose of oil and gas brines, acidic mine wastes, industrial wastes (mainly liquids), animal wastes, municipal treatment plant sludges and cooling water. For the most part, these impoundments contain nonhazardous wastes; however, hazardous wastes are known to be treated, stored and disposed of by 400 facilities involving about 3,200 impoundments. Some of these impoundments have significant potential for contaminating groundwater. Injection Wells

    In some parts of the country, injection wells dispose of liquid wastes underground. Of particular concern is the widespread use of drainage wells to dispose of urban storm water runoff and irrigation drainage. Contaminants associated with drainage wells include suspended sediments; dissolved solids; bacteria; sodium; chloride; nitrate; phosphate; lead, and organic compounds, including pesticides. Land Application of Wastes In many places, solid and liquid wastes are placed or sprayed on the land, commonly after treatment and stabilization.

    The U. S. Environmental Protection Agency (EPA) has estimated that more than 7 million dry tons of sludge from at least 2,463 publicly owned waste treatment plants are applied to about 11,900 parcels of land each year. Contamination can occur from improper land-disposal techniques. Storage and Handling of Materials and Wastes Groundwater contamination as the result of storage and handling of materials includes leaks from both above-ground and underground storage tanks, as well as unintentional spills or poor housekeeping practices in the handling and transferring of materials on industrial and commercial sites.

    Possibly as many as 7 million steel tanks are used to store petroleum products, acids, chemicals, industrial solvents and other types of waste underground. The potential of these tanks to leak increases with age. About 20 percent of existing steel tanks are more than 16 years old, and estimates of the total number that presently leak petroleum products range from 25 to 30 percent. Underground storage tanks appear to be a leading source of benzene, toluene and xylene contaminants, all of which are organic compounds in diesel and gasoline fuels.

    Transporting and Stockpiling Many materials and wastes are transported and then temporarily stored in stockpiles before being used or shipped elsewhere. Precipitation can leach potential contaminants from such stockpile; storage containers can corrode and leak; and accidental spills can occur – as many as 10,000 to 16,000 per year, according to EPA estimates.

    This essay was written by a fellow student. You may use it as a guide or sample for writing your own paper, but remember to cite it correctly. Don’t submit it as your own as it will be considered plagiarism.

    Need a custom essay sample written specially to meet your requirements?

    Choose skilled expert on your subject and get original paper with free plagiarism report

    Order custom paper Without paying upfront

    Management of Groundwater Contamination. (2018, May 12). Retrieved from https://graduateway.com/management-of-groundwater-contamination-essay/

    Hi, my name is Amy 👋

    In case you can't find a relevant example, our professional writers are ready to help you write a unique paper. Just talk to our smart assistant Amy and she'll connect you with the best match.

    Get help with your paper
    We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy