We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

See Pricing

What's Your Topic?

Hire a Professional Writer Now

The input space is limited by 250 symbols

What's Your Deadline?

Choose 3 Hours or More.
Back
2/4 steps

How Many Pages?

Back
3/4 steps

Sign Up and See Pricing

"You must agree to out terms of services and privacy policy"
Back
Get Offer

Research design and analysis

Hire a Professional Writer Now

The input space is limited by 250 symbols

Deadline:2 days left
"You must agree to out terms of services and privacy policy"
Write my paper

A research design encompasses the method and procedures employed to conduct scientific research. The design of a study defines the study type (descriptive, correlational, semi-experimental, experimental, review, meta-analytic) and sub-type (e.g., descriptive-longitudinal case study), research question, hypotheses, independent and dependent variables, experimental design, and, if applicable, data collection methods and a statistical analysis plan. Contents [hide]

1 Design types and sub-types
1.1 Grouping
2 Confirmatory versus exploratory research
3 Examples of fixed designs
3.1 Non-experimental research designs
4 Examples of fixed designs
4.1 Non-experimental research designs
5 Examples of flexible research designs
5.1 Case study
5.2 Ethnographic study
5.3 Grounded Theory study
6 References
7 See also
Design types and sub-types[edit]

Don't use plagiarized sources. Get Your Custom Essay on
Research design and analysis
Just from $13,9/Page
Get custom paper

There are many ways to classify research designs, but sometimes the distinction is artificial and other times different designs are combined. Nonetheless, the list below offers a number of useful distinctions between possible research designs.[1] Descriptive (e.g., case-study, naturalistic observation, survey) Correlational (e.g., case-control study, observational study) Semi-experimental (e.g., field experiment, quasi-experiment) Experimental (Experiment with random assignment)

Review (Literature review, Systematic review)
Meta-analytic (Meta-analysis)
Sometimes a distinction is made between “fixed” and “flexible” or, synonymously, “quantitative” and “qualitative” research designs.

[2] However,
fixed designs need not be quantitative, and flexible design need not be qualitative. In fixed designs, the design of the study is fixed before the main stage of data collection takes place. Fixed designs are normally theory driven; otherwise it is impossible to know in advance which variables need to be controlled and measured. Often, these variables are measured quantitatively. Flexible designs allow for more freedom during the data collection process. One reason for using a flexible research design can be that the variable of interest is not quantitatively measurable, such as culture. In other cases, theory might not be available before one starts the research. However, these distinctions are not recognized by many researchers, such as Stephen Gorard who presents a simpler and cleaner definition of research design Grouping[edit]

The choice of how to group participants depends on the research hypothesis and on how the participants are sampled. In a typical experimental study, there will be at least one “experimental” condition (e.g., “treatment”) and one “control” condition (“no treatment”), but the appropriate method of grouping may be depend on factors such as the duration of measurement phase and participant characteristics: Cohort study

Cross-sectional study
Cross-sequential study
Longitudinal study
Confirmatory versus exploratory research[edit]

Confirmatory research tests a priori hypotheses—outcome predictions that are made before the measurement phase begins. Such a priori hypotheses are usually derived from a theory or the results of previous studies. The advantage of confirmatory research is that the result is more meaningful, in the sense that it is much harder to claim that a certain result is statistically significant. The reason for this is that in confirmatory research, one ideally strives to reduce the probability of falsely reporting a non-significant result as significant. This probability is known as α-level or a type I error. Loosely speaking, if you know what you are looking for, you should be very confident when and where you will find it;
accordingly, you only accept a result as significant if it is highly unlikely to have been observed by chance. Exploratory research on the other hand seeks to generate a posteriori hypotheses by examining a data-set and looking for potential relations between variables. It is also possible to have an idea about a relation between variables but to lack knowledge of the direction and strength of the relation. If the researcher does not have any specific hypotheses beforehand, the study is exploratory with respect to the variables in question (although it might be confirmatory for others). The advantage of exploratory research is that it is easier make new discoveries due to the less stringent methodological restrictions. Here, the researcher does not want to miss a potentially interesting relation and therefore aims to minimize the probability of rejecting a real effect or relation, this probability is sometimes referred to as β and the associated error is of type II. In other words, if you want to see whether some of your measured variables could be related, you would want to increase your chances of finding a significant result by lowering the threshold of what you deem to be significant. Sometimes, a researcher may conduct exploratory research but report it as if it had been confirmatory (HARKing); this is a questionable research practice bordering fraud. Examples of fixed designs[edit]

In an experimental design, the researcher actively tries to change the situation, circumstances, or experience of participants (manipulation), which may lead to a change in behavior or outcomes for the participants of the study. The researcher randomly assigns participants to different conditions, measures the variables of interest and tries to control for confounding variables. Therefore, experiments are often highly fixed even before the data collection starts. In a good experimental design, a few things are of great importance. First of all, it is necessary to think of the best way to operationalize the variables that will be measured. Therefore, it is important to consider how the variable(s) will be measured, as well as which methods would be most appropriate to answer the research question. In addition, the statistical analysis has to be taken into account. Thus, the researcher should consider what the expectations of the study are as well as how to analyse this outcome. Finally, in an experimental design the researcher must think of the practical limitations
including the availability of participants as well as how representative the participants are to the target population. It is important to consider each of these factors before beginning the experiment.[3] Additionally, many researchers employ power analysis before they conduct an experiment, in order to determine how large the sample must be to find an effect of a given size with a given design at the desired probability of making a Type I or Type II error. To read more about experimental research designs, See Experiment. Non-experimental research designs[edit]

Non-experimental research designs do not involve a manipulation of the situation, circumstances, or experience of the participants. Non-experimental research designs can be broadly classified into three categories. First, relational designs, in which a range of variables is measured. These designs are also called correlational studies, because correlational data are most often used analysis. It is important to clarify here that correlation does not imply causation, and rather identifies dependence of one variable on another. Correlational designs are helpful in identifying the relation of one variable to another, and seeing the frequency of co-occurrence in two natural groups (See correlation and dependence). The second type is comparative research. These designs compare two or more groups on one or more variable, such as the effect of gender on grades. The third type of non-experimental research is a longitudinal design. A longitudinal design examines variables such as performance exhibited by a group or groups over time. See Longitudinal study. Examples of fixed designs[edit]

In an experimental design, the researcher actively tries to change the situation, circumstances, or experience of participants (manipulation), which may lead to a change in behavior or outcomes for the participants of the study. The researcher randomly assigns participants to different conditions, measures the variables of interest and tries to control for confounding variables. Therefore, experiments are often highly fixed even before the data collection starts. In a good experimental design, a few things are of great importance. First of all, it is necessary to think of the best way to operationalize the variables that will be measured.
Therefore, it is important to consider how the variable(s) will be measured, as well as which methods would be most appropriate to answer the research question. In addition, the statistical analysis has to be taken into account. Thus, the researcher should consider what the expectations of the study are as well as how to analyse this outcome. Finally, in an experimental design the researcher must think of the practical limitations including the availability of participants as well as how representative the participants are to the target population. It is important to consider each of these factors before beginning the experiment.[4] Additionally, many researchers employ power analysis before they conduct an experiment, in order to determine how large the sample must be to find an effect of a given size with a given design at the desired probability of making a Type I or Type II error. To read more about experimental research designs, See Experiment. Non-experimental research designs[edit]

Non-experimental research designs do not involve a manipulation of the situation, circumstances or experience of the participants. Non-experimental research designs can be broadly classified into three categories. First, relational designs, in which a range of variables is measured. These designs are also called correlational studies, because correlational data are most often used analysis. It is important to clarify here that correlation does not imply causation, and rather identifies dependence of one variable on another. Correlational designs are helpful in identifying the relation of one variable to another, and seeing the frequency of co-occurrence in two natural groups (See correlation and dependence). The second type is comparative research. These designs compare two or more groups on one or more variable, such as the effect of gender on grades. The third type of non-experimental research is a longitudinal design. A longitudinal design examines variables such as performance exhibited by a group or groups over time. See Longitudinal study. Examples of flexible research designs[edit]

Case study[edit]
See also: Case study
Famous case studies are for example the descriptions about the patients of Freud, who were thoroughly analysed and described. Bell (1999) states “a
case study approach is particularly appropriate for individual researchers because it gives an opportunity for one aspect of a problem to be studied in some depth within a limited time scale”.[5] Ethnographic study[edit]

See also: Ethnography
This type of research is involved with a group, organization, culture, or community. Normally the researcher shares a lot of time with the group. Grounded Theory study[edit]
See also: Grounded Theory
Grounded theory research is a systematic research process that works to develop “a process, and action or an interaction about a substantive topic”.[6]

Cite this Research design and analysis

Research design and analysis. (2016, Oct 16). Retrieved from https://graduateway.com/research-design-and-analysis/

Show less
  • Use multiple resourses when assembling your essay
  • Get help form professional writers when not sure you can do it yourself
  • Use Plagiarism Checker to double check your essay
  • Do not copy and paste free to download essays
Get plagiarism free essay

Search for essay samples now

Haven't found the Essay You Want?

Get my paper now

For Only $13.90/page