The two edges around the checking are equal in length. I need to work out the length of the edges and the area of the decking, how much materials required and cost. In the 1st triangle marked A, I need to work out the length the opposite side of the triangle with the angle 690. I will do this by using trigonometry tan equation. Tan e Tan 69 If I subtract mm from the above, this will give me the length of h the border as each side of the border is equal. Will then work out the base of the 2nd triangle marked B using Pythagoras theorem (the square of the hypo) = (the sum of the other 2 sides). Yap = 42 ill then work out the area of the two triangles with the equation A = h x base x perpendicular height By adding the two areas of the triangle together I will get the total area of the two triangles. Using the total area of the decking I will then work out how many urn required, and then calculate the price at EYE.

The flowerbed is a semi-circle positioned along an mm side, surrounded by a 0. Mm wide crazy paving and filled with bulbs. 1st I will decide what size of semi-circle the flowerbed will be and work out the radius I need to work out the area of the semi-circle marked C. The flowerbed using the equation, this will give me the service area of the flower bed Area + then will work out the area of the larger semi-circle marked D using the above equation and subtract the area of the smaller circle (flowerbed). This will give me the area of the crazy paving I will then work out how much crazy paving squired / mm. Ill then work out the cost of the paving @ E. 50 + VAT per mm 1 will work out how many bulbs required for the area in mm for the flower bed, and the cost at E. 40 per mm. Fish pond, safety fence, bridge and rail The fish pond has a depth of CACM enclosed by a safety fence which has a mm wide bridge over it in the shape of a quadrant. The bridge is fitted with a handrail on both sides. Firstly I need to decide what length the sides of the pond are going to be. (Pond marked E) To work out the amount of safety fence required, I will work out the remitter of the square fish pond subtracting mm (mm for each side of the bridge at mm each side).

Perimeter = 4 x sides – 2(1 m) will need to work out how many meters of safety fencing/ m required and then cost it Tate. 70 per m To work out the quadrant shape bridge marked F. As a quadrant is quarter of a circle I can work out the length of the outside edge of the bridge by using the circle theorem. I will calculate the circumference using the radius and dividing by 4. Equation to find Quadrant Circumference = When will then cost the bridge with the local supplier’s prices.